# Relative and Absolute Age Dating 



## Absolute

 vs.Relative Age

Absolute age = The Rock's actual age in number of years.

Relative age = Estimate of the rock's age by comparing to rocks of a known age.

## Absolute vs. <br> Relative <br> Age

Absolute age = You are 13 years old

Relative age = You are older than your sister, but younger than your brother.

## Absolute Age of Rocks

- Based on Radioactive Isotopes

- As minerals crystallize in igneous and metamorphic rocks, they trap certain isotopes in their crystal structure
- The isotopes begin to decay radioactively as soon as the mineral forms.
- The rate at which the isotopes decay is our "geologic clock."
- Measuring the amount of the original element still in the rock tells how old the rock is.


## Relative Age of Rocks

Tanl clluct mex

## Relative vs.Absolute Dating



- Determined from the rock record
- Provide evidence of geological events and past life forms
- Establishes the sequence of events without exact dates
- A occurred before B
- A comparison not an exact age


## Information from Sedimentary Rocks

- Uniformitarianism
- Processes that form rocks and landforms today are the same as in the past.
- Sediments
- Represent older rocks that were weathered, eroded and deposited.
- Principle of Original Horizontality
- Layered rocks were deposited flat and horizontal.
- Principle of Superposition
- Rocks in lower layers are older than rocks above them.
- Rocks can tell us about past environments.


## Uniformitarianism

- "The present is the key to the past."
- Processes that form rocks and landforms today are the same as in the past.



## Principle of Original Horizontality



- Layered rocks were deposited flat and horizontal.
- If they are at an angle and/or folded, then something has happened to them since they were deposited.
- Mountain building
- Earthquakes
- Folding


## Principle of Superposition

## ROCK LAYERS

- Law of Superposition $\rightarrow$ younger rocks are on top, older rocks are on bottom

- The first layer deposited is the one on the bottom and is the oldest layer.
- The layers are younger as you go up the sequence.


## Unconformity

- A boundary between rocks layers with a gap in age
- represents a period of erosion or a pause in deposition.
- Deposition occurred, stopped and/or eroded, started again
- Deposition was not continuous


Time C. This area is again under water in a shallow ocean environment and younger sediments have covered the erosion surface to form an unconformity (black arrow).

Time B.
This area has become an exposed land area and is undergoing erosion of previously deposited sediments.

## Ocean water




Angular Unconformity

## The Principle of Cross-cutting Relationships



- a fault or intrusion is younger than the rocks that it cuts through.


## Environment of Deposition

- Limestone - forms in water
- Sandstone - forms from sediments deposited in sandy areas
- beaches, deserts, and dunes
- Shale - forms from sediments deposited in calm, muddy waters
- Swamps
- Fossils add information



## Index Fossils



- Fossils
- preserve the remains or traces of living things
- Form when they die
- Index fossils
- Widely distributed
- Represent a type of organism that existed briefly
- Narrow time frame to better represent a specific age


## Oldest to Youngest

- Oldest Basement Rock (tan)
- First layer (green)
- Second layer (orange)
- Third oldest layer (purple)
- Youngest igneous rock (red)


Time 4: A layer cross-cuts the first three layers, making it the youngest layer.

